

M1 GNSS Receiver

User Manual

V1.0, modified on 2021.12.04

1 Introduction	
1.1 Product Feature	
1.2 Product Specification & Details	
1.3 Appearance	
1.3.1 Front	3
1.3.2 Bottom	
1.4 Accessory	5
1.4.1 Accessory list	5
1.4.2 Data line interface definition	29
2 Configuration	6
2.1Connection	6
2.1.1 Main Interface	7
2.2 Configuration	8
2.2.1 CFG	8
2.2.2 GNSS Configure	
2.2.3 Network Configuration	20
3 Example command Configuration	21
4 Analysis of common equipment problems	22
Appendix I Configuration instructions Set	23
Appendix II Data Protocol	25
1 Gyroscope Data Protocol	25
1.1 Time Output	25
1.2 Acceleration Output	26
1.3 Angular velocity output	26
1.4 Angle output	26
1.5 Magnetic field output	27
2 Voltage data protocol	28
Appendix III Instruction Import Format	28

Content

1 Introduction

1.1 Product Feature

Based on GNSS high-precision positioning technology, MEMS sensor technology, 4G Communication technology and single-chip system technology.M1 is a low-power professional GNSS receiver for field geological hazard monitoring. With 9750mAh internal battery and built-in solar controller, M1 has stable power supply.

According to the characteristics of geological disaster monitoring, the design of M1 GNSS receiver further reduces the power consumption of the whole monitoring station, reduces the power supply configuration, and thus reduces the construction and operation cost of the whole monitoring system. The whole system adopts plug - in design to greatly simplify the installation process and improve work efficiency.

M1 GNSS receiver can be used with a third-party cloud platform to achieve remote monitoring and management of equipment in the cloud.

1.2 Appearance

1.2.1 Front

1.2.2 Bottom

There are some interfaces at the bottom of the panel, 1 9-pin aviation connector, 1 dual 4G SIM card slot and 6 LED indicators.

Power led: Blinking alternately red and blue when powered on.

Satellite led: Red.

4G led: red, If 4G is not online, it blinks once every 5s and once every 1s after it is

online.

Data led: Red.

Storage light: Red

Bluetooth light: Red, If Bluetooth is not connected, it blinks once every 3s and once every 1s after it is connected.

SIM: Use NANO SIM card, face down

C		
r	-	5
ŀ		
		\sim

PORT: 1 9-pin aviation connector, used for 12V DC power input and one RS232 serial port

1.3 Accessory

This chapter provides information about accessories. Before starting the installation, make sure that all accessories used in the project meet specifications and standards.

1.3.1 Accessory list

NAME	PCS	picture
M1 GNSS receiver	1	
9-pin power cable	1	
9-pin data cable	1	

2 Configuration

To configure the M1 GNSS receiver, we usually use Android software specially developed for it to configure, but after the receiver is powered on, it can be configured through bluetooth connection, which is very convenient

BT Center

2.1 Connection

Open BT Center, turn on Bluetooth, search for nearby Bluetooth devices, select the SN of your device, and click to connect.

2.1.1 Main Interface

After you connect to the device, the main screen is displayed. You can learn about the device on the main screen.

💷 🤐 II 🕌 🛵 🖸	> 🎯 🖇 💐 😰 i 5:00
Device and operat	ion
Info	
Device:M1	
PN:315305801060090	1
Version:V23A1	
Job Mode 🗸	Set \vee
	2
3	
Sat:0	
Delay:0.0	
Positioning status:Not Positione (nocalculate)	ed
0	

- (1) Basic device information, including the device name, PN number, and firmware version
- (2) Set device parameters. Click on to set device parameters

6 10 10

o Mode 🗸	Set 💛
	CFG
	GNSS Configure
	Network Configuration

③Satellite information, including the number of satellite search, differential delay, positioning status information.

2.2 Configuration

This summary will mainly introduce how to correctly configure the working mode of the receiver

2.2.1 CFG

CFG stands for independent debugging. You can directly enter commands in the lower part of the screen to configure and debug the device.

(1)In the command window, long press the screen to enter a command in the command bar. After input, click the command to send. See Appendix I for the instructions and their meanings

2 To clear a window, the information printed in the current window is cleared, but the subsequent output is not affected

③Save the data, The data output by the window will be saved in the data folder in *. TXT format by date.

(4)Send files: When there are too many instructions, you can import them in *. TXT format with one click. The document format is as follows. For details, please refer to Appendix III:

// Command format description
// example:
4,200,SAVE LIST
(the number 4 represents the fourth command to execute; Commas represent delimiters; 200 indicates that the command is
sent 200 milliseconds after the last command is sent. For commands that need to add a carriage return newline, you need to
manually enter a carriage return newline character. # is the start or end characters for command recognition
#
1,0,SET UART CONFIG
2,200,SETMODE0
3,200,CONCOM25
4,200,SAVE LIST
5,1000,RTKCOMMAND RESET
6,200,LOG GPGGA ONTIME 1
7,200,SAVECONFIG
#

(5)Circular transmission: Click and the commands will be sent according to the delayed time cycle

(6) After this parameter is selected, the carriage return will be added automatically when the command is sent

⑦Pause, click to lock the window, will not affect the data saving

2.2.2 GNSS Configure

This screen mainly includes three modes of setting.

ᡂ 4,네 4,세 중. ⁴⁵ ᡂ 4,네 유지 중. ⁴⁵						
back GNSS Configure						
RTCM output	NMEA output	Raw data				
1 RTCM convention	RTCM conventional cfg					
Station RTCM	3.2	-				
Custom RT0 statement	CM output	frequency 😑				
RTCM1	▼ 1Hz	- +				
Selecte	ed statement pa	ackage				
data packet	ta packet frequency delete					
RTCM1004	1	8				
RTCM1005	1	8				
RTCM1012	1	\otimes				
RTCM1104	1	⊗				
		⊗				
		8				
С	oordinate settir	g				
\triangleleft	0					

1) RTCM output

$\textcircled{1}\mbox{RTCM}$ conventional cfg

There are four working modes to choose from. After selecting the mode, the following statement package will automatically add corresponding instructions.

RTCM output	NMEA output	Raw data output
RTCM convent	ional cfg	
Station RTCM	13.2	•
Custom R1 statement	ICM output	frequency 言
Station RT	СМ3.0	•
Station RT	CM3.2	
d Station RT	СМ	\odot
Move Stat	ion RTCM	<u> </u>
KTCPH1000		w
RTCM1012	1	8

back G	ារ	9 @ % ¥ +6:48 ⁻ Ce	back G	ଲା "ଲା ଲ ¹³⁹ ସ ଢ । NSS Confiqu	N @ % ¥ + 6:48 re
RTCM output	NMEA output	Raw data output	Station RTCM.	3.0	
RTCM convention	onal cfg 3.2	-	Custom RT0 statement	CM output f	frequency 📑
Custom RT statement	CM output f	requency 😑	Select	ed statement pa	ackage
RTCM1.	▼ 1Hz	- 6	data packet	frequency	delete
			RTCM1006	10	⊗
Select	ed statement pa	ckage	RTCM1033	10	⊗
data packet	frequency	delete	RTCM1074	1	⊗
RTCM1004	1	⊗	RTCM1084	1	8
RTCM1005	1	⊗	RTCM1094	1	\otimes
RTCM1012	1	8	RTCM1124	1	\otimes
RTCM1104	1	8 8	с	oordinate settin	g
		8	L		
С	oordinate settin	g	В		
\triangleleft	0		\triangleleft	0	

Of course, you can also customize the output:

A: If is selected, the contents of the delivered statement package will be cleared.

B: Click Custom RTCM Statement to select the output content. You can only select one output at a time.

C: Click Output Frequency to select the output frequency;

D: Click • to add the content to the statement package. You can select the output content several times.

HD 1 46	all "all 🔅 9.7 🧕 👁 🕅	〒☆☆☆ 631+6:48		© 6 ".⊪ ".⊓ © 6	। रू. ^{10.4} 🧕 👁	N X X 3 + (
back G	NSS Configure	9	BRT	CM1005		
RTCM output	NMEA output	Raw data output	RT(CM1006		\bigcirc
TCM conventio	onal cfg		RT(CM1004		
Station RTCM	3.0	-	St	CI™1004		
Custom RT	CM output fr		RT	CM1012		0
1 statement	2	3 4	RT	CM1019		()
RTCM1	▼ 1Hz	- 🕂	RT RT	CM1020		\bigcirc
Selecte	ed statement pac	kage	RT	CM1042		
data packet	frequency	delete	d _{RT}	CM1045		\bigcirc
		8	RT	CM1046		\bigcirc
		8	RT	CM1074		
		8	RT	CM1084		\bigcirc
		8	RT	CM1094		\bigcirc
		⊗	RT	CM1124		\bigcirc
C	oordinate setting		RT	CM1104		\bigcirc
<1	0			<1	0	

© 0 411 €72 0 ④ № 0	1 % 💐 631 ≠ 6:49		็สป "สป 🤶 7 🧕 👁 🕻	1 10 % 🎗 163 1 # 6:49
back GNSS Configure		back G	NSS Configur	e
RTCM output NMEA output	Raw data output	RTCM output	NMEA output	Raw data output
RTCM conventional cfg		RTCM conventi	onal cfg	
St 1Hz	•	Station RTCM	3.0	-
300s/time		Custom RT statement	CM output f	requency 言
60s/time		RTCM1	▼ 1Hz	• 🕂
10s/time		Select	ed statement pa	ckage
5s/time	\odot	data packet	frequency	delete
3s/time		RTCM1005	1Hz	⊗
5Hz	\bigcirc	RTCM1006	1Hz	⊗
10Hz	\odot	RTCM1004	1Hz	⊗
20Hz		RTCM1012	1Hz	⊗
				⊗
	\otimes			⊗
Coordinate setting		C	oordinate settin	g
]	\triangleleft	0	

(2) Coordinate setting

If you choose base station mode, you need to configure the base station startup coordinates in two ways:

A: Click Custom and manually enter base station coordinates

Co	oordinate setting			
L				
В				
н				
Status	Single			
Auto	Custom Current			
Height anglevorking mode				
10de 🔻	GNSS 🗸			

B: Or when the device searches for stars, click Current to directly obtain the Current coordinates

C. Then check the automatic start base station

D. Select height angle and working mode

Coordinate setting		Coordinate setting
L 10degree	•	L121.2899637345
B 5degree	\odot	B GNSS
H 15degree		H GNSS+MEMS+Electric quantity
St 20degree	\odot	St Serial output
At 25degree	\odot	AL Serial output+Local record
30degree Hei	\odot	Height angleVorking mode
10de 💌 GNSS	•	10de GNSS

Note: Please do not use local records, the current version does not support.

E. Save the Settings.

Auto	 Image: A start of the start of		Custom	2 Current
Height a	ingl e Vorkir	ng mod	e	
10de	-	GNSS		-
Read o	onfiguratio	n	Clear	output
	Mod	lify confi	guration	
	\triangleleft	0		

2) NMEA output

This is very similar to the RTCM Output setting.

A. Two types of NMEA conventional cfg

HD 8	்யி "பி இ ³⁶ 📮 👁 I	N 🛈 🕏 🎗 💌 📧 I 8:57			".네 ".네 奈 ³⁴ 😑 🖉	N 100 % 🔌 📧 18:57
back G	NSS Configur	e	ba	ck G	GNSS Configu	re
RTCM output	NMEA output	Raw data output	RTC	M output	NMEA output	Raw data output
NMEA convent	ional cfg		NME	A convent	tional cfg	
Test statemer	it package 1	-	Tes	st stateme	nt package 2	•
Custom NMEA output frequency - Custom NMEA output frequency - statement					frequency 😑	
GPGSA	▼ 1Hz	• +		GPGSA	▼ 1Hz	- +
Select	ed statement pa	ckage		Selec	ted statement p	ackage
data packet	frequency	delete	da	ta packet	frequency	delete
GPGGA	1	8		GPGGA	1	⊗
GPRMC	1	\otimes		GPGSV	1	⊗
		8				⊗
		⊗				⊗
		\otimes				⊗
		⊗				⊗
Height angleVo	rking mode		Heig	iht angleVo	orking mode	
10de 🔻	GNSS	-	10	de 🔻	GNSS	•
\triangleleft	0			\triangleleft	\bigcirc	

B. Of course, you can also choose the data you want to output

100 a 100 a	मा समाहि 💯 🧧 👁	🕅 🔯 岩 🔌 💷 1 9:04			00 "II "	비 🙃 ^{3.6} 🦲	@ (1) (Q) >	8:58 🔊 🔋
back G	NSS Configur	e	k					
RTCM output	NMEA output	Raw data output	RT	GPGSA				Э
NMEA conventi	onal cfg		N	GPGST				- 8
Test statemen	t package 1	•	Т	GPGSV				
Custom NM statement	^{1EA} output f			GPHDT				
GPGGA Select	IHZ 1HZ	ckage		GPVTG				
data packet	frequency	delete	c	GPGLL				- 1
		8		GPNTR				
		8		GPZDA				
		8		GPTRA				-1
		8						
		8		BESTPO	SA			
Height anglevor	king mode		He	HEADIN	GA			- 8
10de 🔻	GNSS	•	1	0de	-	GNSS		-
\triangleleft	0				\triangleleft	0		

		TD D		
ᄤᆘᄹᆀᅊᆀ ᅙᇵ ⁴ ᠀ 🗿 🕅 🐼 🛠 🎗 955) 8:58		00 ° *	। ଲି 🗤 🕒 👁	0 0 % % 🖭 9:(
back GNSS Configure	back	GNSS	6 Configu	re
RTCM output NMEA output Raw data	RTCM out	tput NM	EA output	output
NM 1Hz Te 300s/time 60s/time	NMEA con Test stat Custo state	nventional cement pac om NMEA ment	cfg ckage 2 output	frequency
10s/time		Selected st	tatement pa	ackage
5s/time	data pa	cket fr	equency	delete
3s/time	GPGS/	A	1Hz	⊗
	GPGS	v	1Hz	\otimes
5Hz	GPNT	R	1Hz	⊗
10Hz				8
				⊗
20Hz				⊗
	Height an	ıgl₩orking	mode	
	10de	• 0	GNSS	•
		\triangleleft	0	

C. Select height angle and working mode.

Selected statement p	backage	Selected stateme	ent package
data packet frequency	delete	data packet frequer	icy delete
10degree		RANGEB 300s/tir	ne 🔇
G 5degree	•	GNSS	•
B 15degree	•	GNSS+MEMS+Electri	c quantity 💿
20degree	<u> </u>	Serial output	\odot
25degree	<u> </u>	Serial output+Local r	ecord 💿
30degree Hei		Height anglevorking mode	2
10de 🔽 GNSS	•	10de V GNSS	

Note: Please do not use local records, the current version does not support.

D. Save the Settings.

Height angl₩orking mode					
10de 🔻	GNSS 🗸				
Read configuration Clear output					
Modify configuration					

- 1) Raw data output
- A. Two types of raw conventional cfg

600 D 45	बा "बा के ²⁹ 🧧 👁 ।	N 🕼 🖇 🎗 💷 19:13		000 45 000 5	네 "네 중 ²⁵ 🖻	④ [N] 10 \$ ¥ ■ 13
back G	NSS Configur	e	back	G	NSS Config	ure
RTCM output	NMEA output	Raw data output	RTCM o	utput	NMEA outpu	t Raw data output
Raw conventior	al cfg		Raw cor	ventior	nal cfg	
Observation st	tatement 1	-	Observ	ation s	tatement 2	•
Custom Ray statement	w output fi	requency 言	Cus stat	tom Ra ement	w outpu	t frequency 📒
RANGEB	▼ 1Hz	•		NGEB	▼ 1Hz	- -
Selecte	ed statement pa	ckage		Select	ed statement	package
data packet	frequency	delete	data p	acket	frequency	delete
RANGEB	1	⊗	RAN	GEB	1	\otimes
		8	GPSEP	HEMB	60	\otimes
		8	BD2EP	HEMB	60	\otimes
		\otimes	GALEPHE	MERISB	60	\otimes
		⊗	GLOEPH E	EMERIS	60	8
		\otimes				8
Height angl⊌Vor	king mode		Height a	angleVor	king mode	
10de 🔻	GNSS	-	10de	-	GNSS	•
\triangleleft	0			\triangleleft	\bigcirc	

B. Or you can also choose the data you want to output.

80 B 12	네 "네 중 ⁴⁶³ 📮 👁	N 🗭 🖇 🎘 💷 I 9:13	
back G	NSS Configu	re	
RTCM output	NMEA output	Raw data output	R
Raw conventior	nal cfg		R
Observation s	tatement 2	-	- 1
Custom Ra statement	^w 2 ^{output ·}	frequency 3 T	
Select	ed statement pa	ackage	ſ
data packet	frequency	delete	- 1
		\otimes	
		\otimes	
		⊗	
		\otimes	
		8	
		8	
Height angl&Vor	king mode		н
10de 🔻	GNSS	•	
\triangleleft	0		

C. Select height angle and working mode.

Selected statement	package	Select	ted statement pa	ackage
data packet frequency	delete	data packet	frequency	delete
10degree	$\overline{\mathbf{O}}$	RANGEB	300s/time	\otimes
G 5degree		GNSS		•
B 15degree	0	B GNSS+ME	MS+Electric qua	ntity 💿
20degree	<u> </u>	Serial out	but	\odot
25degree	0	Serial out	out+Local record	\odot
30degree Hei		Height angleVo	rking mode	
10de 🔻 GNSS	•	10de 🔻	GNSS	-

Note: Please do not use local records, the current version does not support.

D. Save the Settings.

Height angleVorking mode					
10de 🔻	GNSS 🔻				
Read configuration Clear output					
Modify configuration					

2.2.3 Network Configuration

When you need to upload monitoring data to the management platform through TCP/NTRIP protocol, you can set it in this interface. Select the required protocol, input parameters, click Set, and wait for the setting to be successful.

TCP connection	Ntrip Server	Ntrip Client
targ	get server settir	ngs
IP	140.207.16	6.210
Port	25001	
Set		back

3 Example command Configuration

Also, you can configuration other parameters of the receiver by serial port, like gyroscope and 4G network. For example, through RS232 serial port send instructions to set the GNSS board to output 10 Hz GPGGA message, modify the gyroscope output frequency to 10 Hz; Modify the TCP server address and port number of the 4G network. Modify voltage upload time once every 60 seconds; the instructions are sent in the following order. See Appendix I for detailed instructions.

SET UART COFIG MODE 0 CONCOM12 LOG GPGGA ONTIME 0.1 **SAVECONFIG** CONCOM13 //Example Gyroscope ID is 02 (the following instructions are sent in HEX format) 41 6C 6C 79 02 FF AA 03 06 00 CONCOM14 SETG3CONFIG SETG3IP0192.168.1.100 SETG3PORT08001 SETG3MODE2 SETG3QUIT BATTIME60 MODE1 SAVE LIST

The commands to configure the above parameters using Bluetooth are as follows (you need to connect Bluetooth first and send the following commands from the Bluetooth serial port).

SET UART COFIG MODE 0 CONCOM25 LOG GPGGA ONTIME 0.1 SAVECONFIG CONCOM35 //Example Gyroscope ID is 02 (the following instructions are sent in HEX format) 41 6C 6C 79 02 FF AA 03 06 00 CONCOM45 SETG3CONFIG SETG3IP0192.168.1.100 SETG3PORT08001 SETG3PORT08001 SETG3QUIT BATTIME60 *MODE1 SAVE LIST*

4 Analysis of common equipment problems

Problem	Fault analysis cause	Solution
The Bluetooth ID	The phone is too far from the	The mobile phone approaches the
was not found	receiver or the ID is not fully	receiver and searches again for the
	loaded	Bluetooth ID
4G does not	The IP address or port of the 4G	Reconfigure the IP address or port of
upload data	module is incorrect.	the 4G module.
	The 4G SIM card is incorrectly	Check whether the SIM card is installed
	installed	correctly.
	The device is in MODE0	Set the device to MODE1 mode.
	debugging mode	
the indicator light	The power cable is loose or	Check whether the power cable is
is not on	improperly connected	inversely tightened
The output data is	The baud rate is not set correctly	Check that the baud rate set by the
all garbled or		serial port receiving program of the
dotted		computer is consistent with that set in
		the device CONFIG.

Attachment I Configuration instructions Set

	System debugging instruction
SET UART CONFIG	Enabling system Configuration
MODE0	Switch to debug mode
MODE1	Switch to monitoring mode
CONCOM12	Connect to the GNSS board debugging interface
CONCOM13	Connect to the gyroscope debugging interface
CONCOM14	Connect to the debugging interface of the 4G network module
CONCOM15	System debugging interface and Bluetooth transparent
	transmission
CONCOM25	GNSS board and Bluetooth transparent transmission
BATTIME60	Set the time interval for uploading electric quantity
	information, 60 seconds; The value ranges from 0 to 255
	seconds
SAVE LIST	Save the System Configuration
G	NSS board debugging instruction
UNLOGALL	Disable all output of the GNSS board
LOG RANGEB ONTIME 1	Output 1Hz raw observation data in binary format
LOG RANGEA ONTIME 1	Outputs 1Hz raw observation data in ASCII format
LOG GPSEPHEMB ONTIME	Output GPS ephemeris in binary format, every 300 seconds
300	
LOG BD2EPHEMB ONTIME	Output BDS ephemeris in binary format, every 300 seconds
300	
LOG GLOEPHEMERISB	Output GLO ephemeris in binary format, every 300 seconds
ONTIME 300	
LOG GPSEPHEMA ONTIME	Output GPS ephemeris in ASCII format, every 300 seconds
300	
MODE ROVER	Switch from base station mode to rover station mode
LOG GPGGA ONTIME 0.5	The GPGGA statement is output at 2Hz
MASK 15	Set the satellite altitude cutoff Angle to 15 degrees
SAVECONFIG	Save the board configuration
(Gyroscope debugging instruction
41 6C 6C 79 02 FF AA 03 03 00	Change the output frequency of gyroscope ID 02 to 1Hz (sent
	by HEX)
41 6C 6C 79 02 FF AA 04 06 00	Change the baud rate of serial port to 115200 (sent by HEX) of
	gyroscope ID 02
41 6C 6C 79 02 FF AA 2D FF 00	Change the ID of the gyroscope whose ID is 02 to FF; Allowed
	to change range from 00 to FF (HEX sent)
4	G network debugging instructions
SETG3CONFIG	The 4G configuration is enabled
SETG3MODE0	The 4G module is switched to the debugging mode

SETG3IP0192.168.1.100	Set the TCP server IP address to 192.168.1.100
SETG3PORT01002	Set the TCP PORT to 1002
SETG3MODE2	Set 4G to TCP transparent transmission
SETG3QUIT	Save the Settings and exit the 4G configuration

Gyroscope configuration instructions

First, adjust the display interface to HEX display, and the ID of the gyroscope can be queried in the data 41 6C 6C 79 _ spit out from the serial port. Instructions are sent in hexadecimal format.

For example, change the ID number of the gyroscope module who's ID is 02 to FF as follows:

Input example: 41 6C 6C 79 02 FF AA 03 08 00

The red font is gyroscope ID; the blue font is the change ID option; the green font indicates the ID to be written

To change the frequency of output data from the serial port of the device whose gyroscope ID is 02 to 50 Hz, the command is as follows:

Input example: 41 6C 6C 79 02 FF AA 03 08 00

The red font is gyroscope ID; the blue font is the change frequency option; Green font indicates the specific output frequency (08=50HZ)

Set output frequency							
0*FF	0*AA	L	0*03	RATE	0*00		
Output frequency							
0*01		0.1Hz					
0*02		0.5Hz					
0*03		1Hz					
0*04		2Hz					
0*05		5Hz					
0*06		10Hz					
0*07		20Hz					
0*08		50Hz					
0*09		100Hz					
0*0a		125Hz					
0*0b		200Hz					
0*0c		Single outpu	t				
0*0d		No output					

To change the baud rate of the serial port of gyroscope 02 to 115200, run the following command:

Input example: 41 6C 6C 79 02 FF AA 04 06 00

The red font is gyroscope ID; the blue font is the change baud rate option; the green font

indicates the baud rate to be written

Set baud rate							
0*FF	0*AA		0*04	RAUD	0*00		
Baud rate							
0*00		2400					
0*01		4800					
0*02 9600(Default)							
0*03 19200							
0*04		38400					
0*05		57600					
0*06 115200							
0*07 230400							
0*08 460800							
0*09		921600					

Caution

1) Before modifying parameters of GNSS board, gyroscope and 4G network module, you need to send system debugging commands first, connect to corresponding debugging interfaces, and then send configuration commands of corresponding modules.

2) If you want to set the parameters of each module of the system through Bluetooth, you need to send commands to connect to the corresponding debugging interface first. Such as CONCOM25 / CONCOM35 / CONCOM45, GNSS board/gyroscope /4G network module can be configured respectively.

3) After the module parameters are configured, system debugging instructions need to be sent again to switch the device to MODE1 mode before it can work normally.

4) System debugging and each module have corresponding save configuration instructions, after debugging need to send save instructions; otherwise it will be invalid after power failure.

Attachment II Data Protocol

1 Gyroscope Data Protocol

1.1 Time Output

0X55	0X50	YY	MM	DD	HH	MM	DD	MSL	MSH	SUM
YY: Year, 20YY										
MM: Mc	onth									
DD: day	,									

HH: Hour

MM: Minute

SS: Second

MS: Millisecond

Computational formula:

MS= ((MSH<<8) |MSL)

Sum=0x55+0x50+YY+MM+DD+HH+MM+SS+MSL+MSH

1.2 Acceleration Output

0X55	0X51	AxL	AxH	AyL	AyH	AzL	AzH	TL	ТН	SUM
Comput	Computational formula:									

Ax= ((AxH<<8) |AxL)/32768*16g (g is the acceleration of gravity, 9.8m/s2)

Ay= ((AyH<<8) |AyL)/32768*16g (g is the acceleration of gravity, 9.8m/s2)

AZ= ((AzH<<8) |AzL)/32768*16g (g is the acceleration of gravity, 9.8m/s2)

T=((TH<<8)|TL) /100 °C

Sum=0x55+0x51+AxH+AxL+AYH+AyL+AzH+AzL+TH+TL

Descriptions:

1) Data is sent in hexadecimal format, not ASCII.

2) Each piece of data is passed in order of low and high bytes, which are combined into a signed short. For example, the X-axis acceleration data Ax, where AxL is the low byte and AxH is the high byte. The conversion method is as follows: If Data is the actual Data, DataH is its high byte part, and DataL is its low byte part, then: Data=(short) (DataH<<8|DataL) $_{\circ}$ It is important to note that DataH needs to be cast to a signed short before it is shifted, and that Data is also of a signed short to represent negative numbers.

1.3 Angular velocity output

0X55	0X52	wxL	wxH	wyL	wyH	wzL	wzH	TL	TH	SUM	
Comput	Computational formula:										
wx= ((v	wx= ((wxH<<8) wxL)/32768*2000(°/s)										
wy= ((v	vyH<<8)	wyL)/32	2768*200)0(°/s)							
wz=((w	vzH<<8)	wzL)/32	768*200	0(°/s)							
T=((TH	<<8) TL)	/100 °C									
Sum=0x55+0x52+wxH+wxL+wyH+wyL+wzH+wzL+TH+TL											
1.4 Ang	1.4 Angle output										

0X55 0X52 RollL RollH PitchL PitchH YawL YawH TL TH SUM

Computational formula:

Roll Angle (X-axis) Roll= ((RollH<<8) |RollL)/32768*180(°)

Pitch Angle (Y-axis) Pitch= ((PitchH<<8) |PitchL)/32768*180(°)

Yaw Angle (z axis) Yaw= ((YawH<<8) |YawL)/32768*180(°)

T=((TH<<8)|TL) /100 °C

Sum=0x55+0x53+RollH+RollL+PitchH+PitchL+YawH+YawL+TH+TL

Descriptions:

1) The coordinate system used for attitude Angle settlement is the northeast celestial coordinate system, and modules are placed in the positive direction. As shown in the figure below, the left axis is X axis, the forward axis is Y axis, and the upward axis is Z axis. When Euler Angle represents the attitude, the rotation order of the coordinate system is defined as z-y-x, that is, first around the Z axis, then around the Y axis, then around the X axis.

2) Although the range of roll Angle is ± 180 degrees, in fact, due to the rotation order of coordinates is Z-Y-X, when the attitude is expressed, the range of pitch Angle (Y-axis) is only ± 90 degrees, exceeding 90 degrees will be changed to less than 90 degrees, while the X-axis Angle is greater than 180 degrees. Detailed principle pleases Baidu Euler Angle and attitude expressed related information.

3) Because the three axes are coupled, the attitude Angle will change independently only at a small Angle, while the attitude Angle will change coupled at a large Angle. For example, when the Y axis is close to 90 degrees, even if the attitude only rotates around the Y axis, the Angle of the X axis will also change greatly, which is the inherent problem of Euler Angle to represent the attitude.

1.5 Magnetic field output

0X55	0X54	HxL	HxH	HyL	HyH	HzL	HzH	TL	ТН	SUM
Comput	Computational formula:									
Magnet	Magnetic field output (X-axis) Hx = ((HxH <<8) HxL)									
Magnet	Magnetic field output (Y-axis) Hy = ((HyH <<8) HyL)									
Magnetic field output (Z-axis) Hz = ((HzH <<8) HzL)										
T=((TH	Г=((TH<<8) TL) /100 °С									

Sum=0x55+0x54+HxH+HxL+HyH+HyL+HzH+HzL+TH+TL

2 Voltage data protocol

Voltage data is output in the form of English plus decimal values. For example, Solar 12.0, lead acid battery 8.7, lithium battery 8.4, USB1.5, temperature 36.6

Descriptions: The charging process of solar controller is as follows

1) The maximum input voltage for solar energy is 26V. 21.6V no-load voltage or close to this value is recommended for solar panels.

2) When the solar voltage is greater than 17.2V, start charging the battery. When the battery voltage exceeds 10.6V, the controllable switch is turned on, set Standby startup work, and charges the internal lithium battery.

3) When the built-in lithium battery voltage is greater than 6.2V, the device starts to work.

4) When there is no built-in lithium battery, the battery voltage exceeds 10.6V and the device can be turned on.

Attachment III Instruction Import Format

Command format description

For example:

4,200,SAVE LIST

(The number 4 represents the fourth command to execute;

Commas represent delimiters;

200 indicate that the command is sent 200 milliseconds after the last command is sent. For commands that need to add a carriage return newline, you need to manually enter a carriage return newline character. # is the start or end characters for command recognition

#

1,0,SET UART CONFIG 2,200,SETMODE0 3,200,CONCOM25 4,200,SAVE LIST 5,1000,RTKCOMMAND RESET 6,200,LOG GPGGA ONTIME 1 7,200,SAVECONFIG

Attachment $\,\mathrm{IV}\,$ Data Cable interface definition

PIN definition of 9-pin aviation male connector. (There are corresponding numbers on the plug)

9-pin aviation male connector sequence	definition
1	POWER+
2	POWER-
3	SOLAR+
4	LE_AC BAT
5	RS232 RX
6	RS232 TX
7	GND
8	GND
9	P_ON

PIN definition of 9-pin power cable

9-pin aviation female connector	definition
sequence	
1	NULL
2	NULL
3	SOLAR+(positive pole of solar)
4	BAT+(battery terminal positive)
5	NULL
6	NULL
7	SOLAR-(negative pole of solar)
8	BAT-(battery terminal negative)
9	NULL

PIN definition of 9-pin data cable

9-pin sequen	aviation ce	female	connector	definition
1				DC 12V positive pole
2				DC 12V negative pole
3				COM RS232 B
4				NULL

5	CONFIG RS232 B
6	CONFIG RS232 A
7	COM RS232 A
8	NULL
9	NULL

PORT RS232: You can use the serial port tool to configure the parameters of the receiver; the default baud rate is 115200.

Attachment V Product Specification& Details

Satellites Tracking

user interface BDS: B1/B2 GPS: L1/L2 GLONASS: L1/L2 Galileo: E1/E5b QZSS: L1/L2 Cold start: <25s Initialization: <5s RTK initialization reliability: >99.9% Re-acquisition: <1s

GNSS Accuracy

Standalone:

1.5m Horizontal

2.5m Vertical

RTK:

10mm+1ppm Horizontal

15mm+1ppm Vertical

Post-Processing static:

2.5mm+1ppm

5mm+1ppm

Attitude Sensor Accuracy

Inclination sensor: 0.1° (-90°~90°) Accelerometer sensor: 0.01g (-2g~2g)

Data Format

Corrections Data: RTCM2.X, RTCM3.X, CMR, CMR+

Position Data: NMEA-0183, Binary data, can configure up to 20 Hz data transmitting.

Communication Protocol

Network: TCP, NTRIP, MQTT Serial: RS232, RS485 (baud rate 4800~921600) USB (optional): USB2.0 BT: BT4.0, backward compatible with BT2.x; Support Windows/Android/IOS

Interface

9-pin aviation connector
 1 dual 4G SIM card slot*
 6 LED indicator

PHYSICAL Weight: 1.65kg (including battery inside) Size: Φ196.7mm×129.5mm

Environmental

Working temperature: $-45^{\circ}C \sim +75^{\circ}C$ Storage temperature: $-55^{\circ}C \sim +85^{\circ}C$ Humidity: 100% non-condensing Waterproof & Dustproof: IP67, floatable Drop: Survive from 2m-drop

Electrical

Power consumption: 1.5 \sim 4W, varies due to different work modes Power supply voltage: 9 \sim 26V DC, support automatically start, built-in photoelectric isolation, reverse connection protection Battery capacity: 9750mAh